
anics using data-driven boundary energies. Computer Methods in Applied Mechanics and 
Engineering, 314, 269–295. https://doi.org/10.1016/j.cma.2016.08.002

TOWARDS AUTOMATED BIOMECHANICAL ANALYSIS OF PATIENTS
WITH HYPERTROPHIC CARDIOMYOPATHY

RENEE MILLER1, ERIC KERFOOT1, CHARLENE MAUGER2, ALISTAIR YOUNG1,2, DAVID NORDSLETTEN1,3

INTRODUCTION RESULTS & CONCLUSIONSBIOMECHANICAL MODELLINGIMAGES TO MODELS

Hypertrophic cardiomyopathy (HCM), a
genetic disease characterised by an
abnormal thickening of the ventricular
myocardium, affects up to 1 in 200 people. If
thickening occurs on the septal wall, left
ventricular outflow tract obstruction (LVOTO)
can occur which can be life threatening. A
typical therapy for severe LVOTO involves
either myectomy or alcohol septal ablation.
However, better tools and further
understanding are needed to classify the
severity of HCM and develop an appropriate
therapy plan.

With magnetic resonance imaging
capabilities, computational models provide
a unique tool with which to study the
mechanics of HCM hearts, potentially
uncovering new markers with which clinicians
can use to stratify patients into risk groups
and plan therapy.

Image Segmentation:

A Residual U-Net (5 levels, 5000
iterations) was trained on 1264 long axis
and 9095 short axis images manually
labeled with the left ventricular (LV) blood
pool, LV myocardium and right
ventricular (RV) blood pool1. Data came
from healthy volunteers, patients with HCM as
well as patients with dilated cardiomyopathy.
Images were acquired on both Siemens and
Philips Scanners.

The data was augmented by adding:
• Contrast normalization
• Random flip/transpose
• Dropout in k-space (introducing artificial

noise)
• Free-form deformation (introducing shape

variation)
• Random translation/rotation/zoom

Model Fitting:
1. Register LA/SA masks and align SA masks

(registration error used as weights in Step 4)

2. Masks (Fig 2) à 2D Contours

2. 2D Contours à 3D Data Points

3 Fit template surface mesh to 3D data

points2

a. Stiff fit: Linear least squares fit
b. Soft fit: Quadratic fit with

explicit diffeomorphic constraints

Simulations of the full cardiac cycle were
performed, extending the methods in Asner et
al.3 to the biventricular case. Novel boundary
conditions are introduced to model the
influence of valve plane motion through the
use of data-derived boundary energies, rather
than Dirichlet conditions. In future work,
passive and active parameters will be
personalized by finding the best match
between the geometric data from MR images
and model results. A purely mechanical rather
than electro-mechanical model is used.

Neural Network Dice Scores:

Model Fitting Errors:

Biomechanical simulations are being carried
out using the models fitted using this
automated pipeline. The steps, including
automated segmentation and model
fitting, enable for rapid generation of
high-quality patient-specific biventricular
models.
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Length-dependent active law:

with patient-specific active tension scaling

Reduced Holzapfel-Ogden passive constitutive 
law:

with patient-specific isotropic and fiber stiffness
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1 Ex-vivo vs. In-vivo DTI

Winklhofer et al [1] have shown that fractional anisotropy (FA) measured using ex-vivo

myocardial DTI in humans post-mortem is approximately one-fourth larger than values

measured in in-vivo DTI. In addition, mean di↵usivity (MD) was approximately twice

as low as that observed with in-vivo DTI. The most obvious reason for the reduction in

di↵usivity is the temperature of the corpse. A higher body temperature permits greater

di↵usion. The bodies were imaged at varying lengths of time after decease ranging from

0 - 48 hours. Despite these di↵erences, the changes seen through in-vivo DTI in infarcted

myocardium (increasing di↵usivity and decreasing fractional anisotropy) are consisten

with changes seen through ex-vivo DTI.

In a second study comparing myocardial ex-vivo DTI at di↵erent time points after

fixation [2], the fractional anisotropy values obtained at a post-mortem interval (PMI)

of 0, immediately after death, were similar to those reported for in-vivo measurements.

Results showed that after six days, reconstructions of fibre orientations became unrealistic,

due to observed regional discontinuities across the myocardial wall. The authors suggest

that to ensure adequate reconstruction of the fibre distribution, DTI should be collected

within three days post-mortem.
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Fig 5. Dice scores calculated between neural network segmentations and manually 
drawn segmentations

IMAGES TO MODELS

Heart model based on energy potential 
minimization3,4
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Fig 2. Example labels from the trained neural network on an HCM case

Fig 1. a) Example of HCM versus healthy heart, b) HCM classifications
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a) b)

Fig 7. Example case depicting the fitted surface mesh (black) at a) end-diastole 
and b) end-systole for one case as well as contour points with color depicting 
error (distance from surface)
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Fig 6. RMSE fitting errors (outliers not shown) between surface meshes and 
contour points. Due to the fact that registration errors were used as fitting 
weights, some outlying errors are high (> 10 mm) since they were given small 
weights in the fit. 

10 Criteria for Credible Models

Define context clearly
A pipeline for rapidly generating patient-specific biomechanical models, which captures the shape 
heterogeneity in an HCM cohort, has been implemented 

Use appropriate data Short and long axis MR images were acquired from a clinical protocol

Evaluate within context
Neural network segmentations have been evaluated and compared against manual segmentations for 14 HCM 
cases to ensure adequate dice scores (Fig 5). Additionally, the geometric models and fitting process have been 
evaluated to ensure an accurate fit to contour data (Fig 6 and 7).

List limitations explicitly
The methods are limited by the image quality. A few cases have been obtained with poor image quality (low 
SNR), resulting in poor labelling by the neural network. In these cases, models cannot be fit accurately. 

Use version control
The neural network for image labelling is on Github. Code for segmentation cleaning, contour extraction and 
model fitting is kept on a local development machine with backups.

Document adequately Steps of the pipeline are documented in detail for ease of use.

Disseminate broadly
Portions of this work have been published already: https://link.springer.com/chapter/10.1007/978-3-030-
12029-0_40 and https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8512394

Get independent reviews
Feedback has been obtained throughout the development process from both clinicians and scientists to 
develop accurate and useful patient-specific models.

Test competing 
implementations

Numerous iterations of the neural network (with differing data augmentation steps and training datasets) have 
been tested to create a neural network which is robust in accurately labelling images from diverse sources (e.g. 
different scanners and sequences).

Conform to standards
The segmentations from the neural network are validated against those either performed or checked by an 
expert clinician. 

Matching 0th order moments3 over all valve 
planes: 
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ensures that displacements in the direction of nb are equivalent (weakly), while short-axis
displacements are relaxed by the parameter ", enabling a balance between the expected accuracy in
the data and the required boundary traction required to enforce the data strictly. While this relaxation
prevents some artifacts due to data noise, noise in the base plane direction is still imposed on the
model.

Moreover, the formulation does not ensure that some basic quantities are retained – such as the
0th and 1st moments of the data ud. That is, while ud may carry some (potentially unbiased) noise;
quantities which are, in effect, averages of the data should be preserved in the model. For example,
considering
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the zero and first moments of the base plane – M0, M1,1, M1,2 – if data is of sufficient quality, then
we may wish to directly prescribe these moments and relax point-wise equivalence. This may be
achieved using,
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where {�k
b} = {�0

b ,�
1,1
b ,�1,2

b ,�b} 2 R3 ⇥R3 ⇥R3 ⇥ �bU is a partitioning of the boundary
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b , qb} 2 R3 ⇥R3 ⇥R3 ⇥ �bU . In this formulation,
only integrated quantities are imposed strictly – i.e. mean point and the best fit affine map to the data
– while other conditions are relaxed to eliminate potential noise artifacts. Relaxation is controlled by
the matrix ⌃, which can be built tuned due to estimates of inherent error in long-axis and short-axis
motion, i.e.

⌃ = "lanb ⌦ nb + "sa(1� nb ⌦ nb), "la, "sa > 0.

By design, the formulation ensures that �b satisfies,

M0[�b] = M1,1[�b] = M1,2[�b] = 0,

and that uniqueness is retained in the variables {�k
b} (under suitable assumptions on the original

model problem).

2.3. Endocardial boundary conditions

The endocardial surface of the LV is comprised of myocardial muscle, trabeculae and papillary
muscles that are interacting with intraventricular flows [?]. Typically, the complexity of cardiac
anatomy is simplified to consider only the myocardial muscle, neglecting the presence of trabeculae
and papillary muscles which serve support roles not directly contributing to, but facilitating, cardiac
pump function. While the interaction of muscle and blood flow can yield complex hemodynamics
and momentum transfer, the mechanics of this interaction are principally dominated by fluid
pressure which is orders of magnitude larger then these secondary effects [?]. It has been shown
both experimentally [?] and numerically [?] that left ventricular fluid pressure typically yields spatial
variation in both systole and diastole. However, apart from early diastolic and systolic phases, these
variations in pressure are usually < 5% of the mean pressure. As a result, most left ventricular
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Simulation driven by LV/RV volumes3: 
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where             and             measure model 
volume over CINE SA planes.
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Fig 4. Mitral and aortic valve planes overlain on the 3-chamber long axis image

Fig 3. Illustration of pipeline from masks to models
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